风险提示:理性看待区块链,提高风险意识!
人工智能的圣杯:全同态加密(FHE)
首页 > 业界 > 区块链 2024-07-17 14:30
摘要
全同态加密常被誉为密码学的圣杯,本文探讨 FHE 在人工智能领域的应用前景,指出了当前面临的局限性。并 list 了一些致力于在加密领域利用全同态加密进行 AI 应用的项目 。
币界网报道:

原文作者:Advait (Leo) Jayant

A 希望在 Netflix 和 Amazon 上获得高度个性化的推荐。B 不希望 Netflix 或 Amazon 了解他们的偏好。

在当今的数字时代,我们享受着亚马逊和 Netflix 等服务带来的个性化推荐便利,这些推荐精准地迎合了我们的趣味。然而,这些平台深入我们私人生活的行为正引发越来越多的不安。我们渴望在不牺牲隐私的前提下享受定制化服务。过去,这似乎是一个悖论:如何在不对基于云的人工智能系统分享大量个人数据的情况下实现个性化。全同态加密(FHE)提供了一个解决方案,使得我们能够兼得鱼与熊掌。

人工智能即服务(AIaaS)

人工智能(AI)如今在应对包括计算机视觉、自然语言处理(NLP)和推荐系统在内的多个领域的复杂挑战中扮演着关键角色。然而,这些 AI 模型的发展给普通用户带来了重大挑战:

1.数据量:构建精确模型往往需要庞大的数据集,有时甚至会达到千万亿字节的规模。

2.计算能力:像转换器这样的复杂模型需要数十个 GPU 的强大算力,通常连续运行数周。

3.领域专长:这些模型的微调需要深厚的专业知识。

这些障碍使得大多数用户难以独立开发强大的机器学习模型。

实际应用中的 AI 即服务流水线

进入 AI 即服务(AIaaS)时代,这一模式通过提供由科技巨头(包括 FAANG 成员)管理的云服务,让用户得以接触到最先进的神经网络模型,从而克服了上述障碍。用户只需将原始数据上传至这些平台,数据便会在平台上被处理,进而生成富有洞察力的推断结果。AIaaS 有效地普及了高质量机器学习模型的使用权,将先进的 AI 工具开放给更广泛的群体。然而,遗憾的是,当今的 AIaaS 在带来这些便利的同时,却牺牲了我们的隐私。

人工智能即服务中的数据隐私

目前,数据仅在从客户端传输到服务器的过程中进行加密。服务器能够访问输入数据以及基于这些数据所做的预测。

在 AI 即服务过程中,服务器能够访问输入和输出数据。这种情况使得普通用户共享敏感信息(如医疗和财务数据)变得复杂。诸如 GDPR 和 CCPA 之类的法规加剧了这些担忧,因为它们要求用户在数据被共享之前明确同意,并保证用户有权了解其数据如何被使用。GDPR 还进一步规定了传输过程中数据的加密和保护。这些法规设定了严格的标准,以确保用户的隐私和权利,倡导对个人信息有明确的透明度和控制。鉴于这些要求,我们必须在 AI 即服务(AIaaS)流程中开发强大的隐私机制,以维护信任和合规性。

FHE 解决问题

通过对 a 和 b 进行加密,我们可以确保输入数据保持私密性。

全同态加密(FHE)为云计算中关联的数据隐私问题提供了解决方案。FHE 方案支持密文加法和乘法等操作。其概念简单明了:两个加密值之和等于这两个值之和的加密结果,乘法亦然。

实际操作中,其工作原理如下:用户在本地对明文值?和?执行加法运算。随后,用户加密?和?,并将密文发送至云服务器。服务器能够在加密值上(同态地)执行加法运算并返回结果。从服务器解密得到的结果将与?和?的本地明文加法结果一致。这一过程既保障了数据隐私,又允许在云端进行计算。

基于全同态加密的深度神经网络(DNN)

除了基本的加法和乘法运算外,在 AI 即服务流程中,利用全同态加密(FHE)进行神经网络处理的技术已取得显著进展。在此背景下,用户可以将原始输入数据加密成密文,并仅将这些加密数据传输至云服务器。服务器随后对这些密文进行同态计算,生成加密输出,并将其返回给用户。关键在于,只有用户持有私钥,使其能够解密并访问结果。这构建了一个端到端的 FHE 加密数据流,确保用户数据在整个过程中的隐私安全。

基于全同态加密的神经网络在 AI 即服务中为用户提供了显著的灵活性。一旦密文被发送到服务器,用户便可离线,因为客户端与服务器之间无需频繁通信。这一特性对物联网设备尤为有利,它们通常在限制条件下运行,频繁通信往往不切实际。

然而,值得注意的是全同态加密(FHE)的局限性。其计算开销巨大;FHE 方案本质上耗时、复杂且资源密集。此外,FHE 目前难以有效支持非线性操作,这对神经网络的实现构成了挑战。这一限制可能会影响基于 FHE 构建的神经网络的准确性,因为非线性操作对这类模型的性能至关重要。

K.-Y. Lam, X. Lu, L. Zhang, X. Wang, H. Wang, 和 S. Q. Goh 所著的 "基于高效全同态加密的隐私增强神经网络在 AI 即服务中的应用",在南洋理工大学(新加坡)和中国科学院(中国)发表。

(Lam 等人,2024 年)描述了一种用于 AI 即服务的隐私增强神经网络协议。该协议首先通过使用误差学习(LWE)来定义输入层的参数。LWE 是一种加密原语,用于通过加密来保护数据,使得无需先解密即可对加密数据进行计算。对于隐藏输出层,参数则通过环 LWE(RLWE)和环 GSW(RGSW)来定义,这两种高级加密技术扩展了 LWE,以实现更高效的加密操作。

公共参数包括分解基? 及???给定一个输入向量? 长度为?, 一组? LWE 密文(??,??)为每个元素?[?]生成了使用 LWE 私钥?,关于?的评估密钥为索引生成?[?]>0?[?]<0此外,还针对?设置了一组 LWE 切换密钥。这些密钥支持在不同加密方案间进行高效切换。

输入层被指定为第 0 层,输出层为第?层对于每一层?从 1 到?神经元数量为??在第 0 层已确定。权重矩阵??偏置向量?? 从第 0 层开始 在第 0 层上叠加被定义。对于每个神经元从 0 到??1来自第?1层的 LWE 密文在同态加密下进行评估。这意味着计算是在加密数据上执行的,以计算中的线性函数。第?层中的第-th 个神经元,结合权重矩阵和偏置向量。随后,在中评估查找表(LUT)。-th 神经元,以及从?的切换 到较小的?执行操作后,接着对结果进行舍入和重新缩放。该结果被纳入第?层 LWE 密文集合中。

最后,协议将 LWE 密文返回给用户。用户随后可以使用私钥?解密所有密文。查找推理结果。

此协议通过利用全同态加密(FHE)技术,高效实现了隐私保护的神经网络推理。FHE 允许在加密数据上进行计算,而不向处理服务器泄露数据本身,确保了数据隐私的同时,提供了 AI 即服务的优势。

AI 中全同态加密的应用

FHE(全同态加密)使得在加密数据上进行安全计算成为可能,不仅开拓了众多新的应用场景,同时确保了数据的隐私性和安全性。

广告中的消费者隐私:(Armknecht 等人,2013 年)提出了一种创新的推荐系统,该系统利用全同态加密(FHE)。此系统能够在向用户提供个性化推荐的同时,确保这些推荐内容对系统本身完全保密。这保证了用户偏好信息的私密性,有效解决了定向广告中的重大隐私问题。

医疗应用:(Naehrig 等人,2011 年)为医疗保健行业提出了一个引人注目的方案。他们建议使用全同态加密(FHE)持续将患者的医疗数据以加密形式上传至服务提供商。这一做法确保了敏感的医疗信息在其整个生命周期内保持机密性,既增强了患者隐私保护,又使得医疗机构能够无缝进行数据处理和分析。

数据挖掘:挖掘大型数据集能够产生重大洞见,但往往以用户隐私为代价。(Yang, Zhong, 和 Wright, 2006)通过在全同态加密(FHE)背景下应用函数加密解决了这一问题。这种方法使得从庞大的数据集中提取有价值的信息成为可能,同时不损害被挖掘数据个体隐私的安全性。

财务隐私:设想一个场景,一家公司拥有敏感数据和专有算法,必须保密。(Naehrig 等人,2011 年)建议采用同态加密来解决这一问题。通过应用全同态加密(FHE),公司能够在不暴露数据或算法的情况下,对加密数据进行必要的计算,从而确保财务隐私和知识产权的保护。

法医图像识别:(Bosch 等,2014)描述了一种利用全同态加密(FHE)外包法医图像识别的方法。这一技术对执法机构尤其有益。通过应用 FHE,警方及其他机构能够在不暴露图像内容的情况下,检测硬盘上的非法图像,从而保护调查中数据的完整性和机密性。

从广告和医疗保健到数据挖掘、金融安全和执法,全同态加密有望彻底改变我们在各个领域处理敏感信息的方式。随着我们不断发展和完善这些技术,在一个日益数据驱动的世界中保护隐私和安全的重要性再怎么强调也不为过。

全同态加密(FHE)的局限性

尽管具有潜力,我们仍需解决一些关键限制

  1. 多用户支持:全同态加密(FHE)允许对加密数据进行计算,但在涉及多个用户的场景中,复杂性成倍增加。通常,每个用户的数据会使用唯一的公钥进行加密。管理这些不同的数据集,尤其是在大规模环境中考虑到 FHE 的计算需求,变得不切实际。为此,研究人员如 Lopez-Alt 等人于 2013 年提出多密钥 FHE 框架,允许对使用不同密钥加密的数据集进行同时操作。这种方法虽然前景看好,但引入了额外的复杂层级,并需要在密钥管理和系统架构方面进行精细协调,以确保隐私和效率。

  2. 大规模计算开销:全同态加密(FHE)的核心在于其能够在加密数据上执行计算。然而,这一能力伴随着巨大的代价。与传统的未加密计算相比,FHE 操作的计算开销显著增加。这种开销通常表现为多项式形式,但涉及高次多项式,加剧了运行时间,使其不适用于实时应用。针对 FHE 的硬件加速代表了巨大的市场机遇,旨在降低计算复杂性并提高执行速度。

  3. 有限操作:近期进展确实拓宽了全同态加密的应用范围,使其能支持更多种类的运算。然而,它主要仍适用于线性和多项式计算,这对涉及复杂非线性模型(如深度神经网络)的人工智能应用而言,是一个重大限制。这些 AI 模型所需的操作在当前全同态加密框架下实现高效执行颇具挑战。尽管我们正取得进展,但全同态加密的操作能力与先进 AI 算法需求之间的差距,仍是亟待突破的关键障碍。

加密与人工智能背景下的全同态加密

以下是一些致力于在加密领域利用全同态加密(FHE)进行 AI 应用的公司:

  • Zama 提供 Concrete ML,这是一套开源工具,旨在简化数据科学家使用全同态加密(FHE)的过程。Concrete ML 能够将机器学习模型转换为其同态等价形式,从而实现对加密数据的保密计算。Zama 的方法使得数据科学家无需深入的密码学知识就能利用 FHE,这在医疗和金融等对数据隐私至关重要的领域尤为有用。Zama 的工具在保持敏感信息加密的同时,促进了安全的数据分析和机器学习。

  • Privasee 专注于构建一个安全的 AI 计算网络。他们的平台利用全同态加密(FHE)技术,使得多方能够在不泄露敏感信息的情况下进行协作。通过使用 FHE,Privasee 确保用户数据在整个 AI 计算过程中保持加密状态,从而保护隐私并遵守如 GDPR 等严格的数据保护法规。他们的系统支持多种 AI 模型,为安全数据处理提供了一个多功能的解决方案。

  • Octra 将加密货币与人工智能相结合,以提升数字交易安全性和数据管理效率。通过融合全同态加密(FHE)与机器学习技术,Octra 致力于增强去中心化云存储的安全性与隐私保护。其平台通过运用区块链、密码学及人工智能技术,确保用户数据始终处于加密且安全的状态。这一策略为去中心化经济中的数字交易安全与数据隐私构建了坚实的框架。

  • Mind Network 将全同态加密(FHE)与人工智能结合,实现人工智能处理过程中的安全加密计算,无需解密。这促进了隐私保护的、去中心化的人工智能环境,无缝融合了加密安全与人工智能功能。这种方法不仅保护了数据的机密性,还实现了无需信任、去中心化的环境,其中人工智能操作可以在不依赖中央权威或暴露敏感信息的情况下进行,有效结合了 FHE 的加密强度与人工智能系统的操作需求。

在全同态加密(FHE)、人工智能(AI)和加密货币领域前沿运营的公司数量仍然有限。这主要是因为有效实施 FHE 需要巨大的计算开销,要求强大的处理能力以高效执行加密计算。

结语

全同态加密(FHE)通过允许在未解密的情况下对加密数据进行计算,为增强 AI 中的隐私提供了一种有前景的方法。这一能力在医疗和金融等对数据隐私至关重要的敏感领域尤为宝贵。然而,FHE 面临重大挑战,包括高计算开销以及在处理深度学习所必需的非线性操作方面的局限性。尽管存在这些障碍,FHE 算法和硬件加速的进步正在为 AI 中更实用的应用铺平道路。该领域的持续发展有望极大提升安全、保护隐私的 AI 服务,平衡计算效率与强大的数据保护。

发表评论
发表评论
暂无评论
    相关阅读
    币界百科
    币界资讯
    在连锁反式的情况下,评估XRP价格目标已接近解决方案。
    区块链
    2025-03-13 17:52:45
    与中心化基础设施相比,去中心化架构对开放数据的利用更加高效且实用。
    Web3
    2025-03-13 17:30:02
    Dogecoin牢固地保持了至关重要的支持水平,分析师重申了[激增]以前所未有的高高。
    区块链
    2025-03-13 17:05:48
    根据周四的新闻稿,Ripple刚刚获得了迪拜金融服务管理局(DFSA)许可证,以在迪拜国际金融中心(DIFC)提供受监管的加密货币。
    区块链
    2025-03-13 17:03:47
    近期比特币利好消息不断,为市场注入新活力与信心。DeepSeek AI的出现或对比特币等风险资产有利,其低成本特性有助于降低通胀,使比特币等无AI关联的资产从中受益。渣打银行分析师预计,若美联储态度中立,比特币价格可能重新站上10.5万美元。从长期看,机构资金持续流入是比特币价格主要驱动力,2025年长期投资机构将大规模入场,推动资金流入超越去年水平。此外,地缘政治或经济危机可能强化比特币作为价值储存工具的需求。投资者需密切关注市场动态,把握潜在机会。同时,也有知名AI模型对2025年比特币价格给出预测区间,如ChatGPT预测为175,000 - 350,000美元等,这些预测综合考虑了机构采用、供应稀缺、宏观经济趋势等因素。不过,加密货币市场复杂多变,投资决策仍需谨慎。
    矿业百科
    2025-03-07 15:56:29
    在虚拟货币市场蓬勃发展的2025年,选择靠谱的交易平台至关重要。币安是全球领先交易平台,提供超600种加密货币交易,交易费用低且安全措施强大。火币成立于2013年,以稳健运营闻名,有完善风控体系。OKX采用先进技术保障资产安全,还有“保险基金”计划。Coinbase是美国持牌交易所,合规性强。此外,Kraken、Bitfinex、Gate.io、Bybit等也各有特色,如Kraken坚持精品路线,上线优质项目。投资者选择时要多方面考量,DYOR。
    区块链百科
    2025-03-07 17:20:43
    在加密货币市场中,SPELL代币热度渐涨,不少投资者都想通过正规交易所官网参与交易。然而,面对众多网站,如何找到真正的SPELL交易所官网成为难题。选错官网不仅可能导致交易受阻,还存在安全隐患。本文将为你详细解析寻找官网的方法,带你避开陷阱,顺利开启SPELL代币交易之旅,让你不再为官网问题而困扰。
    区块链书籍
    2025-03-07 20:32:52
    近期加密货币市场中,SOL币备受关注。美国投资机构VanEck预测,随着智能合约平台需求升温以及美国M2货币供应量持续增长,到2025年底,Solana(SOL)价格有望飙升至520美元,市值上看2500亿美元。目前SOL交易价格为197.43美元,若预测成真,今年还会再上涨163%。过去一年,SOL已飙涨102%,现为市值第5大的加密货币。此外,Metaplex生态的技术突破也可能推动SOL币价格上涨。该生态引入新的NFT标准,提高了NFT的可扩展性和互操作性,促进了NFT市场繁荣,增加了对SOL币的需求。不过,市场存在不确定性,行业竞争、政策变化等因素都可能影响SOL币价格走势。投资者需DYOR,谨慎做出决策。
    区块链书籍
    2025-03-07 13:29:25
    在虚拟币的世界里,价值排名一直是投资者关注的焦点。2024年最值钱的虚拟币排行榜前十名中,比特币(BTC)稳居榜首,它是加密货币领域的先驱,市值超过1万亿美元,交易量巨大。以太坊(ETH)以其智能合约平台紧随其后,市值超5000亿美元。币安币(BNB)依托币安交易所的强大背书,排名第三。泰达币(USDT)作为与美元挂钩的稳定币,也有超过800亿美元的市值。此外,莱特币(LTC)、狗狗币(DOGE)、瑞波币(XRP)、卡尔达诺(ADA)、波场(TRX)等也都在前十之列,各有其独特的特点和优势,在虚拟币市场中占据着重要地位。
    区块链百科
    2025-03-07 16:01:05
    在数字资产蓬勃发展的当下,BSW交易所官网与NWC交易备受关注。BSW币交易所是专注数字资产交易的平台,采用银行级安全防护技术,交易速度快,支持多样数字资产,官网还提供安卓版APP下载,界面简洁易用。而对于NWC交易,若想参与需选可靠交易所,注册账户、充值资金后即可购买或出售NWC币,完成交易后还能提取到数字钱包存储。了解这些内容,能让投资者更好地把握数字资产交易的机遇,同时也需关注其中的风险与挑战,DYOR,谨慎操作。
    币种知识
    2025-03-04 10:30:16
    在当今数字化浪潮下,数字货币交易领域不断涌现新的机遇与挑战。ABEL交易平台凭借其技术革新与安全升级的优势,为用户提供可靠的交易环境,其底层区块链技术的全面革新大幅提升交易速度与安全性。而EVZ币作为电子竞技行业的通用货币,拥有广泛的应用场景,吸引着众多投资者的目光。它已上线多个知名交易所,方便用户进行买卖交易。本文将深入探讨ABEL交易平台和EVZ交易的特点、优势以及未来发展趋势,带您了解这两个在数字货币领域备受关注的存在,助您在DYOR的过程中对其有更全面的认识,把握行业新动态,洞察其中的潜力与价值,
    矿业知识
    2025-03-03 20:49:34
    近期以太坊市场表现颇为亮眼,价格大幅攀升,引发了市场的广泛关注。然而,在这种强势上涨的背后,以太坊是否存在回调的可能性呢?本文将深入分析以太坊当前的市场形势、影响其价格波动的因素等,带您全面了解以太坊回调的潜在风险,为您在加密货币市场的决策提供有价值的参考。无论是资深投资者还是加密货币新手,都能从本文中获取有用的信息,DYOR,谨慎应对市场变化。
    区块链知识
    2025-03-03 20:52:11
    在当今数字化浪潮下,加密货币领域发展迅猛,ANON 平台与 FWOG 交易备受关注。ANON 平台凭借其独特的技术架构和创新模式,为用户提供了全新的数字资产交易体验。而 FWOG 交易则以其高效、便捷的特点,成为众多投资者青睐的交易方式。本文将深入剖析 ANON 平台的优势与特色,详细解读 FWOG 交易的流程与规则,探讨它们在加密货币市场中的发展前景和面临的挑战,为广大投资者和行业从业者提供有价值的参考和见解。
    区块链知识
    2025-03-03 14:49:05
    在当今复杂多变的金融领域中,DASH杠杆和PSP合约逐渐成为备受关注的话题。DASH作为一种去中心化的数字货币,其杠杆交易模式在带来更多机会的同时,也伴随着不小的风险。而PSP合约在不同领域有着不同含义,其背后的运作机制值得深入探究。了解DASH杠杆的原理和PSP合约的细则,对于参与者来说至关重要。无论是新手还是有经验的投资者,都需谨慎对待,深入研究其潜在的风险与机遇,才能在这个充满挑战的市场中做出更明智的决策。
    矿业知识
    2025-03-03 20:16:27
    推荐专栏
    热门币种
    更多
    币种
    美元价格
    24H涨跌幅
    BTC比特币
    60,963.61 USDT
    ¥435,103.38
    -2.72%
    ETH以太坊
    3,368.69 USDT
    ¥24,042.67
    -0.3%
    BNB币安币
    570.68 USDT
    ¥4,073.00
    -0.28%
    USDT泰达币
    1.02 USDT
    ¥7.25
    -0.19%
    SOL
    135.96 USDT
    ¥970.36
    +7.66%
    USDC
    1.00 USDT
    ¥7.15
    -0.01%
    TON
    7.59 USDT
    ¥54.14
    +4.55%
    XRP瑞波币
    0.47720 USDT
    ¥3.41
    +0.48%
    DOGE狗狗币
    0.12210 USDT
    ¥0.87140
    +2.43%
    ADA艾达币
    0.39050 USDT
    ¥2.79
    +3.88%
    热搜币种
    更多
    币种
    美元价格
    24H涨跌幅
    SuperRare
    0.087383 USDT
    ¥0.63
    -10.66%
    Filecoin
    2.781 USDT
    ¥20.14
    +1.13%
    比特币
    83315.73 USDT
    ¥603,372.52
    +0.89%
    柚子
    0.5014 USDT
    ¥3.63
    +3.06%
    Solana
    126.77 USDT
    ¥918.07
    +2.21%
    Horizen
    9.1412 USDT
    ¥66.20
    +5.23%
    以太坊
    1885.82 USDT
    ¥13,657.11
    -0.07%
    dYdX
    0.613 USDT
    ¥4.44
    +2.89%
    狗狗币
    0.1709 USDT
    ¥1.24
    +2.64%
    Shiba Inu
    1.233E-5 USDT
    ¥0.00
    +1.07%
    Gatechain Token
    20.3637 USDT
    ¥147.47
    +2.23%
    Arweave
    6.0946 USDT
    ¥44.14
    +1.11%
    最新快讯
    更多
    “Hyperliquid50倍杠杆巨鲸”充值409万枚USDC开启ETH空单
    2025-03-13 18:24:58
    Telegram为其自托管加密钱包引入交易和收益功能
    2025-03-13 18:19:03
    PoPP完成600万美元融资,总融资达1200万美元
    2025-03-13 18:16:42
    币界网最新行情晚报:BNB币安币价格达580.31美元/枚,日内涨幅1.02%
    2025-03-13 18:07:21
    俄罗斯央行提议3年加密交易试点,仅限持有1150万美元资产或年收入5000万美元投资者参与
    2025-03-13 18:07:01
    美股盘前加密货币股票涨跌不一,MicroStrategy跌0.3%
    2025-03-13 18:06:51
    美股三大股指期货均转涨
    2025-03-13 18:03:14